2 research outputs found

    Distributed and adaptive location identification system for mobile devices

    Full text link
    Indoor location identification and navigation need to be as simple, seamless, and ubiquitous as its outdoor GPS-based counterpart is. It would be of great convenience to the mobile user to be able to continue navigating seamlessly as he or she moves from a GPS-clear outdoor environment into an indoor environment or a GPS-obstructed outdoor environment such as a tunnel or forest. Existing infrastructure-based indoor localization systems lack such capability, on top of potentially facing several critical technical challenges such as increased cost of installation, centralization, lack of reliability, poor localization accuracy, poor adaptation to the dynamics of the surrounding environment, latency, system-level and computational complexities, repetitive labor-intensive parameter tuning, and user privacy. To this end, this paper presents a novel mechanism with the potential to overcome most (if not all) of the abovementioned challenges. The proposed mechanism is simple, distributed, adaptive, collaborative, and cost-effective. Based on the proposed algorithm, a mobile blind device can potentially utilize, as GPS-like reference nodes, either in-range location-aware compatible mobile devices or preinstalled low-cost infrastructure-less location-aware beacon nodes. The proposed approach is model-based and calibration-free that uses the received signal strength to periodically and collaboratively measure and update the radio frequency characteristics of the operating environment to estimate the distances to the reference nodes. Trilateration is then used by the blind device to identify its own location, similar to that used in the GPS-based system. Simulation and empirical testing ascertained that the proposed approach can potentially be the core of future indoor and GPS-obstructed environments

    An Improved Binary Owl Feature Selection in the Context of Android Malware Detection

    No full text
    Recently, the proliferation of smartphones, tablets, and smartwatches has raised security concerns from researchers. Android-based mobile devices are considered a dominant operating system. The open-source nature of this platform makes it a good target for malware attacks that result in both data exfiltration and property loss. To handle the security issues of mobile malware attacks, researchers proposed novel algorithms and detection approaches. However, there is no standard dataset used by researchers to make a fair evaluation. Most of the research datasets were collected from the Play Store or collected randomly from public datasets such as the DREBIN dataset. In this paper, a wrapper-based approach for Android malware detection has been proposed. The proposed wrapper consists of a newly modified binary Owl optimizer and a random forest classifier. The proposed approach was evaluated using standard data splits given by the DREBIN dataset in terms of accuracy, precision, recall, false-positive rate, and F1-score. The proposed approach reaches 98.84% and 86.34% for accuracy and F-score, respectively. Furthermore, it outperforms several related approaches from the literature in terms of accuracy, precision, and recall
    corecore